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Abstract. The effects of asymmetry and the electric field on the electronic subbands and the nonlinear
intersubband optical absorption of GaAs quantum wells represented by a Pöschl-Teller confining potential
are studied. The potential itself can be made asymmetric through a correct choice of its parameter set and
this adjustable asymmetry is important for optimizing the absorption. In that way optimal cases can be
created. We calculate the modified wave functions and electronic subbands variationally. The linear and
the nonlinear optical intersubband absorption coefficients are calculated. Numerical results for a typical
GaAs quantum well are presented. The nonlinear part of the absorption coefficient is strongly modified by
the asymmetry parameters while the electric field affects it at smaller values of the parameters.

PACS. 42.65.Ky Frequency conversion; harmonic generation, including higher-order harmonic generation
- 78.67.De Quantum wells

1 Introduction

The intersubband optical transitions within the conduc-
tion band of a GaAs quantum well has been observed
experimentally [1]. A very large dipole strength and a
narrow band width were observed. This suggests there is
a strong nonlinearities associated with the intersubband
transitions. Moreover, application of an electric field par-
allel to the growth direction to GaAs quantum well re-
sulted in a Stark shift of intersuband transitions [2]. There
are numerous studies focused on the intersubband transi-
tions and optical absorptions [3–17] and nonlinear optical
properties induced by interband and intersubband transi-
tions [18,19] in semiconductor quantum wells. The inter-
subband transitions within the conduction band of semi-
conductor heterostructures have many device applications
in the infrared region [20].

The nonlinear optical properties generally depend on
the asymmetry of the confining potential. The asymmetry
of the single quantum wells is obtained through changing
the composition gradient of the host material or apply-
ing an electric field in the growth direction. In the cal-
culations cited, the nonlinear optical properties are cal-
culated by choosing an asymmetrical potential of fixed
shape. However, the dependence of these properties on
the well parameters may be betters studied by using a
potential whose asymmetry can be adjusted and the cor-
responding Hamiltonian can be analytically solved.
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The Pöschl-Teller potential [21] has attracted some
interest in recent years [22–25]. The Pöschl-Teller po-
tential has tunable asymmetry and the corresponding
Schrödinger equation is analytically solvable in the ab-
sence of an applied electric field [21]. Its width and depth
can be adjusted or it can easily become asymmetric by a
correct choice of its parameter set. The tunable asymme-
try of the potential, therefore, is expected to yield promis-
ing nonlinear optical properties. Tong [22] suggests sev-
eral applications in semiconductor heterojunction devices
and in optical systems. Tong and Kiriushcheva [23] showed
that it can be used in reduction of noise in resonance tun-
nelling devices and other devices. Radovanovic et al. [24]
worked on several intersubband absorption properties of
the potential. Yildirim and Tomak [25] studied several in-
tersubband nonlinear optical properties of the potential.
We studied the effect of the these parameters on the linear
and nonlinear intersubband optical absorption without an
electric field [25]. The peak position and the peak value of
the total absorption are strong functions of the parame-
ters. However, there is no work on the effect of the electric
field on the electronic subband structure and the optical
absorption of such a potential.

In this work, we calculate the new energy levels and
the modified wave functions for the ground and first ex-
cited states when an electric field is applied in the growth
direction. This brings an additional asymmetry to the
potential. It will be interesting to investigate its effects
on the nonlinear intersubband optical absorption. The
variational method with Gram-Schmidt orthogonalization
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procedure [26] is used as there is no analytic solutions
valid for all values of the electric field to the best of our
knowledge. We find that energy levels increase and the
wave functions are pushed to the one side of the well with
the increasing electric field. The results are in good agree-
ment with those obtained from the calculations based on
the time-independent perturbation theory. The linear and
nonlinear intersubband optical absorptions are calculated.
The peak values of the nonlinear term are decreased in
magnitude which enhances the total absorption coefficient
at larger values of the parameters. The electric field mod-
ifies the peak values of the total absorption at smaller
values of the parameters rather than at their large val-
ues. The shift of the resonance energy with the increasing
electric field depends on the relative magnitudes of the
parameters.

The organization of this paper is as follows: in Sec-
tion 2, the Gram-Schmidt orthogonalization procedure is
introduced and the form of the ground state and first-
excited state wave functions are presented. The expres-
sions for the linear and the nonlinear absorption coeffi-
cient are derived within the density matrix formalism. In
Section 3, numerical implementation on typical GaAs ma-
terial is presented. A brief conclusion is given in Section 4.

2 Theory

Consider an electron with a charge −|e| and a constant
effective mass m∗ in a quantum well represented by a po-
tential V (z) in the presence of an electric field F along the
growth direction, z, of the well. Then the Hamiltonian of
the problem is

H = − �
2

2m∗

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
+ V (z) + qFz, (1)

where

V (z) =
�

2γ2

2m∗

[
κ (κ− 1)
sin2 (γz)

+
η (η − 1)
cos2 (γz)

]
, κ, η > 1. (2)

The Pöschl-Teller potential , V(z) is governed by three
parameters: κ, η, and γ. This potential has singularities
at z = 0 and at z = π

2γ [21]. γ is known as the width
parameter, and κ, η as the depth parameters. κ and η
also tune the degree of the asymmetry. The minimum of
the potential occurs at smaller z values for κ < η while it
occurs at larger z values for κ > η. The potential profile
is perfectly symmetric for κ = η. Pöschl-Teller potential
resembles the profile of a diffused quantum well [27].

In the absence of the electric field, the eigenfunctions
ψn,k(r) and eigenenergies εn,k, are given respectively by

ψn,k(r) = ϕn(z) exp(ik‖ · r‖), (3)

εn,k = En +
�

2

2m∗
∣∣k‖

∣∣2 , (4)

where k‖and r‖ are the wave and position vectors in the xy
plane. ϕn (z) and En are the envelope wave function and

transverse energy of the nth subband, respectively and are
the solutions of the Schrödinger equation

Hzϕn(z) = Enϕn(z), (5)

where Hz is the z component of the Hamiltonian H . ϕn(z)
and En are given by [21]

ϕn(z) = Cn sinκ(γz) cosη(γz)

× 2F1

(
−n, κ+ η + n, κ+

1
2
; sin2(γz)

)
, (6)

En =
�

2γ2

2m∗ (κ+ η + 2n)2 n = 0, 1, 2, . . . (7)

Here, Cn is the normalization constant and
2F1(a, b, c; f(z)) is the Hypergeometric function.

The simple form of the trial wave function,
fn(z) exp (−βnz), is proved to give accurate results for
n = 1 for an infinite well [26], where fn(z) is the zero-field
nth quantum well bound state and βn is a variational pa-
rameter. However, it provides significantly different results
from the numerical calculations for the higher energy lev-
els as these trial wave functions are not orthogonal to each
other [26]. We find analytic forms of orthogonalized trial
wave functions by the Gram-Schmidt orthogonalization
procedure [26]. This procedure requires the construction
of an orthonormal set {φ0, φ1, . . .} from a finite or an infi-
nite independent set {u0, u1, . . .} which is not necessarily
orthonormal [26].

We suggest the following nth vector, un,

un(z) = sinκ(γz) cosη(γz)

× 2F1

(
−n, κ+ η + n, κ+

1
2
; sin2(γz)

)

× exp
[
−βn

(
z

L
+

1
2

)]
, (8)

which is not an orthogonal set, where βn is the nth vari-
ational parameter. The variational wave function for the
ground state is

φ0 = u0〈u0|u0〉−1/2. (9)

The ground state energy is found by minimization of
E0(β0) with respect to β0. The corresponding equation
is given as

E0(β0) = 〈u0|Hz |u0〉〈u0|u0〉−1. (10)

We start with
θ = u1 − 〈u1|φ0〉φ0. (11)

to find the first excited wave function and its energy. Here
〈u1|φ0〉 is the inner product between the related functions.
Minimization of

E1(β1) = 〈θ|Hz |θ〉〈θ|θ〉−1 (12)

with respect to β1 provides us with the first excited state
energy level. The corresponding wave function can be
found as

φ1 = θ〈θ|θ〉−1/2. (13)
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We consider an optical radiation of angular frequency ω
applied to the system with the polarization along the
growth direction, z. The incident field can be written
as [28]

E(t) =
∑

j

E(ωj)e−iωjt, (14)

where the summation goes over all frequencies. The one-
electron density matrix equation with intraband relax-
ation is

∂ρij

∂t
=

1
i�

[H0 − qzE(t), ρ]ij − Γij

(
ρ− ρ(0)

)
ij
, (15)

where H0 is unperturbed Hamiltonian. The Γij elements
are taken to be equal to one value Γ0 only. Equation (15)
is solved via the iterative method [4,28], by noting that,

ρ(t) =
∑

n

ρ(n)(t), (16)

with

∂ρ
(n+1)
ij

∂t
=

1
i�

[
H0, ρ

(n+1)
]

ij
− Γ0ρ

(n+1)
ij

− 1
i�

[
qz, ρ(n)

]
ij
E(t). (17)

The electronic polarization P(t) and the susceptibility χ(t)
caused by the optical field E(t) can be expressed through
the dipole operator µ and the density matrix as [4,28]

P (t) =
1
V

Tr(ρµ), (18)

where V is the volume of the system and Tr stands for
the trace.

The absorption coefficient and the susceptibility are
related by [4]

α(ω) =
4πω
nrc

Im (χ(ω)) , (19)

where nr is the refractive index of the system and the
c is the speed of the light. By using the density matrix
formalism and the iterative procedure [4,28], the linear
and the third-order absorption coefficients, α(1)(ω) and
α(3)(ω, I), respectively are derived. We neglect the higher-
harmonic terms and consider only the steady-state re-
sponse. The first- and third-order absorption coefficients
are found to be

α(1)(ω) =
4πω
nrc

σs |µ10|2 �Γ0

(E10 − �ω)2 + (�Γ0)
2 , (20)

α(3)(ω, I) = −2ω
(

4π
nrc

)2
Iσs |µ10|4 �Γ0(

(E10 − �ω)2 + (�Γ0)
2
)2

×
(

1 −
∣∣∣∣µ11 − µ00

2µ10

∣∣∣∣
2

×
{
(E10−�ω)2 − (�Γ0)2+2E10(E10−�ω)

}
E2

10+(�Γ0)2

)
,

(21)
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Fig. 1. The Pöschl-Teller potential profiles with (dashed-line)
and without (solid line) an applied-electric field for three dif-
ferent κ values: 1.2, 2.0, and 2.8 in panels (a), (b), and (c), re-
spectively. The electric field strength is 100 kV cm−1 and η = 2
for each curve.

respectively. Here I is the intensity of the incident field,
σs is the density of the electrons, E10 = E1 − E0, and
µij is the matrix element of the dipole operator µij =
〈φi|qz|φj〉 (i, j = 0, 1). The second term in equation (21)
is zero when the potential is symmetric. We write the total
absorption coefficient α(ω, I) as

α(ω, I) = α(1)(ω) + α(3)(ω, I). (22)

3 Numerical results and discussion

We work out the wave functions and the energy levels
and then calculate α(1)(ω) and α(3)(ω, I) using numerical
values for a typical GaAs quantum well in this section.
These input parameters [4] are: σs = 3× 1016 cm−3, Γ0 =
1/0.14 ps−1, nr = 3.2, m∗ = 0.067m0. The length of the
quantum well, L, and γ are taken to be 126.5 Å and π

2L ,
respectively.

In Figure 1, the potential profile is shown for three
different κ values, namely κ = 1.2, κ = 2, and κ = 2.8
in the absence and the presence of an electric field of
100 kVcm−1, respectively. As would be expected, the elec-
tric field introduce an additional asymmetry and the po-
tential becomes narrower. In all cases, the applied field
increases the minimum of the potential which is expected
to give higher energy levels compared to zero-field case.

The normalized wave functions of the ground and first
excited levels are plotted in Figures 2 and 3, respectively.
The wave functions are shifted to the direction opposite to
the applied electric field. The wave functions correspond-
ing to the potential determined by κ = 1.2 are shifted
more because, the potential for the region z < L/2 is
more confining.

The variationally calculated ground and first excited
energy levels are displayed in Table 1. As the applied elec-
tric field is increased the energy levels increase also since
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Table 1. The variational and perturbational calculated energy eigenvalues for the ground and first excited states in meV under
the applied electric field for η = 2. The values in parenthesis are calculated by the time-independent perturbation theory. The
applied electric field is 0, 25, 50, 100 kV/cm from top to bottom, respectively

κ = 1.2 κ = 2.0 κ = 2.8
E0 E1 E0 E1 E0 E1

89.70 (89.70) 236.87 (236.87) 140.16 (140.16) 315.36 (315.36) 201.83 (201.83) 405.06 (405.06)

103.19 (103.20) 251.69 (251.69) 155.84 (155.85) 331.15 (331.16) 219.05 (219.06) 421.72 (421.73)

116.38 (116.38) 266.54 (266.55) 171.30 (171.31) 346.95 (346.96) 236.09 (236.11) 438.37 (438.39)

142.12 (142.01) 296.58 (296.64) 201.82 (201.83) 378.83 (378.86) 269.99 (270.04) 471.94 (471.97)
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Fig. 2. The normalized ground state wave functions of the
Pöschl-Teller quantum well with (dashed-line) and without
(solid line) an applied electric field for three different κ val-
ues: 1.2, 2.0, and 2.8 in panels (a), (b), and (c), respectively.
The electric field strength is 500 kV cm−1 and η = 2 for each
curve.
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Fig. 3. The normalized first-excited state wave functions of
the Pöschl-Teller quantum well with (dashed- line) and without
(solid line) an applied electric field for three different κ values:
1.2, 2.0, and 2.8 in panels (a), (b), and (c), respectively. The
electric field strength is 500 kV cm−1 and η = 2 for each curve.

the potential curve becomes narrower and its minimum is
shifted upward in energy. The energy levels are not equally
spaced for a fixed κ, instead they are almost linearly pro-
portional to the applied electric field. We can explain this
by the time-independent perturbation theory. For weak
fields, such that [29]

qFL�| E(0)
0 − E

(0)
1 |, (23)

the shift in the nth energy level can be written as

∆n = Fµnn + F 2
∑
j �=n

| µnj |2
E

(0)
n − E

(0)
j

+ . . . , (24)

where zero in superscripts refers to the zero-field energy
levels. As the first term in equation (24) dominates, it
is expected that the energetic difference increases almost
linearly with the applied electric field provided that κ is
constant. The energy values for both states obtained from
the perturbation calculations are also shown in Table 1.
We see that both methods are in good agreement with
each other.

In intersubband transitions most of the oscillator
strength is in the 1 −→ 2 transition (it is nearly 0.96 for
an infinite well potential). Then the Thomas-Reich-Kuhn
yields [30]

2m∗

�2
E10|z10|2 ∼= 1. (25)

That is, the enhancement of the linear absorption origi-
nates from the contribution of the optical transitions be-
tween the conduction band and the other bands of the
quantum well [30]. We have seen that our calculations
on the Pöschl-Teller quantum well obey equation (25) for
1 < κ, η ≤ 3.0 up to F = 100 kVcm−1 and we have ob-
tained almost constant peak values for equation (20) (not
shown) if it is assumed that the electric field does not
change the electron distribution in the subbands (when
this assumption is not applied it is possible to enhance
the peak value of α(1)(ω) by the electric field [4]).

When equation (22) is evaluated at the resonance fre-
quency (i.e. �ω ≈ E10) its peak value reads

αp(ω, I) = α(1)
p (ω)

[
(1 − 8π

nrc

Iq2

(�Γ0)2
|z10|2

]
, (26)
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Fig. 4. |z10|2 as a function of κ for η = 1.2, 2.0, and 2.8
displayed by dashed-, dotted- and solid lines, respectively. The
same lines labeled by triangles are drawn also in the presence
of an electric field of 100 kV cm−1.

where p in subscripts implies peak value of the quantity.
Our detailed calculations on the second term in equa-
tion (21) (not shown) say that the contribution due to
this term to α(3)(ω) is very small. Hence we can safely ig-
nore it in calculations. Then the problem reduces to max-
imize |z10|2. We plot |z10|2 as a function of κ in Figure 4.
In the figure, the results obtained when an electric field
of 100 kVcm−1 is applied are presented with lines having
triangles. It is obvious that |z10|2 is inversely proportional
to κ and η. This is expected since the larger parameters
we put the narrower wells we obtain and in an infinite
quantum well |z10|2 ∝ L2. The electric field does not al-
ter |z10|2 significantly. But if relatively larger electric field
strengths are considered it is possible [4] to get larger val-
ues of |z10|2. Regarding equation (26) we conclude that
larger values of κ, and η will give larger αp(ω, I). This is
verified in Figure 5 in which the αp(ω, I) is plotted as a
function of κ. As it is said above the electric field does not
induce any significant enhancement.

The intersubband transition energy E10 is plotted as
function of κ in Figure 6. It is clearly seen that the transi-
tion energy increases with increasing κ and η. The inter-
esting point is that the application of the electric field
yields blue-shift in the transition energy as η becomes
larger while it induces red-shift in the transition energy
as κ becomes larger.

The linear α(1)(ω), the nonlinear absorption coef-
ficient α(3)(ω, I), and the total absorption coefficient
α(ω, I) as functions of the incident photon energy at I =
1.0 MW/cm2 for an applied electric field of 100 kVcm−1

are shown in Figure 7 to illustrate the conclusions above.
As expected, α(1)(ω) is almost constant regardless of the
changes in the parameters while α(ω, I) is higher for larger
values of the parameters. The electric field does not make
any enhancement in α(1)(ω) while it does little in α(ω, I).
The resonance energies which occur at �ω = E21 are blue-
shifted for smaller κ while they are red-shifted for larger
κ as mentioned above.
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Fig. 5. αp(ω, I) as a function of κ for η = 1.2, 2.0, and 2.8
displayed by dashed-, dotted- and solid lines, respectively. The
same lines labeled by triangles are drawn also in the presence
of an electric field of 100 kV cm−1.
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Fig. 6. E21 as a function of κ for η = 1.2, 2.0, and 2.8 displayed
by dashed-, dotted- and solid lines, respectively. The same lines
labeled by triangles are drawn also in the presence of an electric
field of 100 kV cm−1.
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Fig. 7. The linear, the nonlinear, and the total absorption
coefficient with (dashed-lines) and without (solid lines) an ap-
plied electric field for two different κ values: 1.2 and 2.8. The
applied electric field is 100 kV cm−1 and η value is taken as 1.2.
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4 Conclusion

In this work, we study the effects of the electric field on
the conduction subband structure and the intersubband
optical absorption of the Pöschl-Teller QW. The new en-
ergy levels and wave functions have are variationally cal-
culated using Gram-Schmidt orthogonalization procedure.
The energy levels increase in the same direction with the
increasing applied electric field. The wave functions are
shifted to the same side of the well. Although, the ground
state wave function is shifted to the z < L/2 region sig-
nificantly, the excited state wave function still have a
considerable amplitude in the z > L/2 region even at
F = 500 kVcm−1. The results of variational calculations
are compared with the results we obtain from the time-
independent perturbation theory. They are found to be in
good agreement with each other up to an electric field of
100 kVcm−1. We write the total absorption coefficient as a
function of |z10|2 which allows us to investigate its depen-
dence on the parameters, κ and η. The total absorption
coefficient is increased as the κ and η are increased to-
gether. The electric field does not affect significantly the
total coefficient at larger values of the parameters, its main
effect is only on the resonance energy. The peak positions
are blue-shifted as η increases and κ decreases and red-
shifted in the opposite case with the increasing electric
field. We have used the variational method in this work,
but the main conclusions will not change if one uses more
precise methods of calculations. Although we have used
a constant effective mass in the Hamiltonian, a more re-
alistic case should take into account the variation of the
effective mass along the growth direction. But, for wide
quantum wells, such as the one used here, the difference
in the ground state energy is negligibly small when m∗ is
considered variable [27].
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